GUILLAUME LAMOUR

GUILLAUME LAMOUR

Poste Actuel

Ingénieur de Recherche - Equipe 4

    Research Activities

    My research is at the crossroads of biomaterials  and biophysics

     

    • My Ph.D. work (2006–2010, University of Paris Diderot and Paris Descartes, France) focused on studying neuronal growth on modified surfaces. I showed that spatial variations in adhesion energy could dramatically affect cell adhesion and differentiation into neurons. This might help in designing new biocompatible surfaces for nerve regeneration.

    → Publications:

    Lamour et al.  Colloids Surf B 2009

    Lamour et al.  Biomaterials 2010

    Lamour et al.  JBMR-A 2011

    Lamour et al.  J Chem Educ 2011

    Lamour et al.  Macromol Biosci 2015

     

     

     

    • My first postdoc (2011–2016, University of British Columbia, Vancouver, Canada) focused on amyloids. I connected their mechanical properties with the intermolecular interactions in the fibrils. This helps understanding the molecular origins of amyloid diseases (e.g. Parkinson’s, prion diseases) and may help in designing amyloid-based nanomaterials with tailored mechanical properties.

     

    → Publications:

    Lamour et al.  ACS Nano 2014

    Lamour et al.  Source Code Biol Med 2015

    Lamour et al.  Biophys J  2017

    Nassar,…, and Lamour.  J Phys Chem Lett 2018

    Nassar,…, and Lamour.  JACS 2019

     

     

    • In my current work as a Research Engineer (2017-present, University of Evry - Paris Saclay - Genopole grant), I develop new AFM approaches to study the nanomechanics of biomimetic and living lipid membranes (e.g. from lipid nanotubes and lamellipodia, respectively).   This helps understanding mechanisms underlying endocytosis, vesicle formation, and may open up new research avenues in drug design targeting membrane-cytoskeleton interactions.

    → Publications:

    Lamour et al.  Physical Review X 2020

    [....more coming !]

    Present and past collaborators:

    • Pierre Joanne, Onnik Agbulut (Sorbonne Université)
    • Julia Ortony (Massachusetts Institute of Technology)
    • Martin Lenz (LPTMS, Universités Paris-Sud and Paris Saclay) PRX 2020;
    • Clément Campillo, Sid Labdi, Juan Pelta (Université d'Evry-Paris SaclayPRX 2020;
    • Joerg Gsponer (University of British Columbia) JACS 2019; J Phys Chem Lett 2018; Biophys J 2017;...
    • Hongbin Li (UBC) J Phys Chem Lett 2018; JACS 2014; ACS Nano 2014; Biophys J 2012;...
    • Neil Cashman (UBC) ACS Chem Neurosci 2018; J Neurosci 2013
    • Hao Wu (Harvard Medical School) Biophys J 2017
    • Thibault Mayor (UBC) Biophys J 2017
    • Xiaonan Lu (UBC) Int J Food Microbiol 2016
    • Dieter Bromme (UBC) J Biol Chem 2015; J Biol Chem 2013
    • Tuomas Knowles (Cambridge University) Source Code Biol Med 2014
    • Nancy Forde (Simon Fraser University) Biomacromolecules 2014
    • Ahmed Hamraoui (UPMC) Macromol Biosci 2015; J Biomed Mat Res 2011; Biomaterials 2010;...
    • Eric Borguet (Temple University) J Chem Educ 2010; Biomaterials 2010

    Journal Publications

    h-index = 13

    • Webpages (including citation profile):

    Google Scholar
    ResearcherID
    

    → Since 2009: 9 first-, 6 second-, and 2 last-author publications.
    → Last 5 years: > 700 citations.

     

    • Selected publications

    On using AFM to study lipid membranes:

    Lamour G., A. Allard, J. Pelta, S. Labdi, M. Lenz, and C. Campillo. Mapping and Modeling the Nanomechanics of Bare and Protein-Coated Lipid Nanotubes. PHYS REV X. 2020; 10:011031-1–17.

    On the material properties of amyloid fibrils:

    – Nassar R., E. Wong, J. Gsponer, and G. Lamour. Inverse correlation between amyloid stiffness and size. JACS. 2019; 141:58–61.

    Lamour G., C. Yip, HB. Li, and J. Gsponer. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young’s moduli. ACS NANO. 2014; 8:3851–61.

    On combining AFM and simulations to study protein nanomechanics:

    – Nassar R., E. Wong, JM. Bui, CK. Yip, HB. Li, J. Gsponer, and G. Lamour. Mechanical anisotropy in GNNQQNY amyloid crystals. J PHYS CHEM LETT. 2018; 9: 4901–09.

    – He C., G. Lamour, A. Xiao, J. Gsponer and HB Li. Mechanically Tightening a Protein Slipknot into a Trefoil Knot. JACS. 2014; 136:11946–11955.

    On biomaterials surface effects on neuronal growth:

    Lamour G., A. Eftekhari-Bafrooei, E. Borguet, S. Souès, and A. Hamraoui. Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. BIOMATERIALS. 2010; 31:3762–71.

    Lamour G., N. Journiac, S. Souès, S. Bonneau, P. Nassoy, and A. Hamraoui. Influence of surface energy distribution on neuritogenesis. COLLOIDS SURF B. 2009; 72:208–218.

     

    • Publications (full list):

    [21] Lamour G., A. Allard, J. Pelta, S. Labdi, M. Lenz, and C. Campillo. Mapping and Modeling the Nanomechanics of Bare and Protein-Coated Lipid Nanotubes. PHYS REV X. 2020; 10:011031-1–17.

    [20] Nassar R., E. Wong, J. Gsponer, and G. Lamour. Inverse correlation between amyloid stiffness and size. J AM CHEM SOC. 2019; 141:58–61.

    [19] Nassar R., E. Wong, JM. Bui, CK. Yip, HB. Li, J. Gsponer, and G. Lamour. Mechanical anisotropy in GNNQQNY amyloid crystals. J PHYS CHEM LETT. 2018; 9: 4901–09.

    [18] Silverman J., E. Gibbs, X. Peng, K. Martens, C. Balducci, J. Wang, M. Yousefi, C.M. Cowan, G. Lamour, et al. A Rational Structured Epitope Defines a Distinct Subclass of Toxic Amyloid-beta Oligomers. ACS CHEM NEUROSCI. 2018; 9:1591–1606.

    [17] Lamour G., R. Nassar, PHW. Chan, G. Bozkurt, J. Li, JM. Bui, C. Yip, T. Mayor, HB. Li, H. Wu, and J. Gsponer. Mapping the broad structural and mechanical properties of amyloid fibrils. BIOPHYS J. 2017; 112:584–594.

    [16] J. Feng, G. Lamour, R. Xue, MN. Mirvakliki, SG. Hatzikiriakos, J. Xu, HB. Li, S. Wang, X. Lu. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. INT J FOOD MICROBIOL. 2016; 238:172–182.

    [15] Panwar P., G. Lamour, NCW. Mackenzie, H. Yang, F. Ko, HB. Li, D. Brömme. Changes in structural-mechanical properties and degradability of collagen during ageing-associated modifications. J BIOL CHEM. 2015; 290:23291–306.

    [14] Lamour G., S. Souès, A. Hamraoui. Substrate-induced PC12 cell differentiation without filopodial, lamellipodial activity or NGF stimulation. MACROMOL BIOSCI. 2015; 15:364–371.

    [13] Lamour G., JB. Kirkegaard, HB. Li, TPJ. Knowles, and J. Gsponer. Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. SOURCE CODE BIOL MED. 2014; 9:16.1–16.6.

    [12] Kovacic S., L. Samii, G. Lamour, HB. Li, H. Linke, EHC. Bromley, DN. Woolfson, PMG. Curmi, and NR. Forde. Construction and characterization of kilobasepair densely labeled peptide-DNA. BIOMACROMOLECULES. 2014; 15:4065–4072.

    [11] He C., G. Lamour, A. Xiao, J. Gsponer and HB Li. Mechanically Tightening a Protein Slipknot into a Trefoil Knot. J AM CHEM SOC. 2014; 136:11946–11955.

    [10] Lamour G., C. Yip, HB. Li, and J. Gsponer. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young’s moduli. ACS NANO. 2014; 8:3851–3861.

    [9] Ostapchenko VG., FH. Beraldo, AH. Mohammad, YF. Xie, P. Hirata, AC. Magalhaes, G. Lamour, et al. The prion protein ligand, stress-inducible phosphoprotein I (STI1), regulates amyloid- ; oligomer toxicity. J. NEUROSCI. 2013; 33:16552–16564.

    [8] Cumberworth A. , G. Lamour, M. Babu, and J. Gsponer. Promiscuity as a functional trait: Intrinsically disordered regions as central players of interactomes. BIOCHEM J. 2013; 454:361–369.

    [7] Panwar P., X. Du, V. Sharma, G. Lamour, M. Castro, HB. Li, and D. Brömme. Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J BIOL CHEM. 2013; 288:5940–5960.

    [6] Li YD., G. Lamour, J. Gsponer, P. Zheng and HB. Li. The molecular mechanism underlying mechanical anisotropy of the protein GB1. BIOPHYS J. 2012; 103:2361–2368.

    [5] Lamour G., S. Souès, and A. Hamraoui. Interplay between long- and short-range interactions drives neuritogenesis on stiff surfaces. J BIOMED MAT RES A. 2011; 99A: 598–606.

    [4] Khorvash M., G. Lamour, and J. Gsponer. Long-time scale fluctuation s of human prion protein determined by restrained MD simulations. BIOCHEMISTRY. 2011; 50: 10191–94.

    [3] Lamour G., A. Eftekhari-Bafrooei, E. Borguet, S. Souès, and A. Hamraoui. Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. BIOMATERIALS. 2010; 31:3762–3771.

    [2] Lamour G., A. Hamraoui, A. Buvailo, Y. Xing, S. Keuleyan, V. Prakash, A. Eftekhari-Bafrooei, and E. Borguet. Contact angle measurements using a simplified experimental set-up. J CHEM EDUC. 2010; 87:1403–1407.

    [1] Lamour G., N. Journiac, S. Souès, S. Bonneau, P. Nassoy, and A. Hamraoui. Influence of surface energy distribution on neuritogenesis. COLLOIDS SURF B. 2009; 72:208–218.

    Tutorial Lecturer (chargé de TD)

     

    • 2020: Tutorial Lectures/Workshop on Atomic Force Microscopy to Masters' students

                   → Theory, imaging modes, mechanics

    • 2016: Physics classes to Physics students and Biophysics classes to Biology students at the University of Evry (96 h; 3 × 40 students; 1st year undergraduates) 

                   → Mechanics, electricity and optics

    • 2007: Physics classes to medical school students at the Faculty of Medicine, University of Paris Descartes (66 h; 2 × 40 students; 1st year undergraduates)

                   → Diffusion (fluid statics and dynamics), electricity and optics

     

     

    guillaume.lamour [at] univ-evry.fr

    lamour99 [at] hotmail.com

     

    Homepages

    LinkedIn

    ResearchGate

    Google Scholar

    Publons/Researcher ID

    Semantic Scholar

    Retour à la liste des services