GUILLAUME LAMOUR

Research Activities
My research is at the crossroads of biomaterials and biophysics. I have developed an expertise in Atomic Force Microscopy (AFM) to study biological materials, from biopolymers to living cells.
I am funded and have been funded by the ANR (Agence Nationale de la Recherche), the Genopole Biocluster (Evry-Courcouronnes), le DIM RESPORE and le Fonds d'Investissement pour la Recherche (FIR), for a total of ~400 k€.
- My Ph.D. work (2006–2010, University of Paris Diderot and Paris Descartes, France) focused on studying neuronal growth on modified surfaces. I showed that spatial variations in adhesion energy could dramatically affect cell adhesion and differentiation into neurons. This might help in designing new biocompatible surfaces for nerve regeneration.
→ Publications:
Lamour et al. Colloids Surf B 2009
Lamour et al. Biomaterials 2010
Lamour et al. JBMR-A 2011
Lamour et al. J Chem Educ 2011
Lamour et al. Macromol Biosci 2015
- My first postdoc (2011–2016, University of British Columbia, Vancouver, Canada) focused on amyloids. I connected their mechanical properties with the intermolecular interactions in the fibrils. This helps understanding the molecular origins of amyloid diseases (e.g. Parkinson’s, prion diseases) and may help in designing amyloid-based nanomaterials with tailored mechanical properties.
→ Publications:
Lamour et al. ACS Nano 2014
Lamour et al. Source Code Biol Med 2015
Lamour et al. Biophys J 2017
Nassar,…, and Lamour. J Phys Chem Lett 2018
Nassar,…, and Lamour. JACS 2019
- In my current work as a Research Engineer (2017-present, University of Evry - Paris Saclay - Genopole grant), I develop new approaches to study the nanomechanics of biomimetic membranes and of living cells, using atomic force microscopy (AFM). This helps understanding mechanisms underlying endocytosis, vesicle formation, and may open up new research avenues in drug design targeting membrane-cytoskeleton interactions.
Meanwhile, I collaborate with research groups in France and abroad to develop AFM activities in the Lambe in a variety of projects. For instance, we have worked with new nanofiber materials exhibiting extraordinary mechanical properties; we are currently working on the mechanical properties of disease models of cardiomyocytes.
→ Publications:
Lamour et al. Phys. Rev. X 2020
Christoff-Tempesta et al. Nat. Nanotechnol. 2021
Kim et al. Nano Lett. 2021
Cho et al. Nat. Commun. 2021
Liboz et al. ACS Appl. Mater. Interfaces 2023
Seffouh et al. Sci. Rep. 2023
Lamour et al. ACS Biomater. Sci. Eng. 2024
Herardot et al. Stem Cell Rev.2024
Allard et al. BMC Bioinformatics.2025
[....more coming !]
Present and past collaborators:
International:
- Julia Ortony (MIT, now @UCSD -Univ of California at San Diego) Nano Lett 2021; Nat. Nanotechnol. 2020; Nat. Commun. 2021
- Joerg Gsponer (University of British Columbia) JACS 2019; J Phys Chem Lett 2018; Biophys J 2017;...
- Hongbin Li (UBC) J Phys Chem Lett 2018; JACS 2014; ACS Nano 2014; Biophys J 2012;...
- Neil Cashman (UBC) ACS Chem Neurosci 2018; J Neurosci 2013
- Hao Wu (Harvard Medical School) Biophys J 2017
- Xiaonan Lu (UBC) Int J Food Microbiol 2016
- Dieter Bromme (UBC) J Biol Chem 2015; J Biol Chem 2013
- Tuomas Knowles (Cambridge University) Source Code Biol Med 2014
- Nancy Forde (Simon Fraser University) Biomacromolecules 2014
National:
- Clément Campillo, Sid Labdi, Juan Pelta, Régis Daniel (Université d'Evry-Paris Saclay) ACS Biomater Sci Eng 2024; Sci Rep 2023; Physical Review X 2020;
- Christelle Monville, Karim Ben M'Barek (i-STEM) Stem Cell Rev 2024;
- Martin Lenz (LPTMS, Universités Paris-Sud and Paris Saclay) Physical Review X 2020;
- Ahmed Hamraoui (Univ Paris Cité) Macromol Biosci 2015; J Biomed Mat Res 2011; Biomaterials 2010;...
- Eric Borguet (Temple University) J Chem Educ 2010; Biomaterials 2010
Journal Publications
h-index = 17.
→ ~180 citations/year.
Webpages (including citation profile):
– Google Scholar
– ResearcherID
Selected publications
On using atomic force microscopy to study living cells:
– Lamour G., M. Malo, R. Crépin, J. Pelta, S. Labdi, and C. Campillo. Dynamically mapping the topography and stiffness of the leading edge of migrating cells using AFM in fast-QI mode. ACS BIOMATER. SCI. ENG. 2024; 10:1364–78. DOI: 10.1021/acsbiomaterials.3c01254.
On using AFM to study lipid membranes:
– Lamour G., A. Allard, J. Pelta, S. Labdi, M. Lenz, and C. Campillo. Mapping and Modeling the Nanomechanics of Bare and Protein-Coated Lipid Nanotubes. PHYS REV X. 2020; 10:011031-1–17. doi.org/10.1103/PhysRevX.10.011031
On using multifrequency AFM to study amyloids:
– Nassar R., E. Wong, JM. Bui, CK. Yip, HB. Li, J. Gsponer, and G. Lamour. Mechanical anisotropy in GNNQQNY amyloid crystals. J PHYS CHEM LETT. 2018; 9: 4901–09. doi.org/10.1021/acs.jpclett.8b02027
On using statistical mechanics and simulations to study amyloids:
– Lamour G., R. Nassar, PHW. Chan, G. Bozkurt, J. Li, JM. Bui, C. Yip, T. Mayor, HB. Li, H. Wu, and J. Gsponer. Mapping the broad structural and mechanical properties of amyloid fibrils. BIOPHYS J. 2017; 112:584–594. doi.org/10.1016/j.bpj.2016.12.036
On biomaterials surface effects on neuronal growth:
– Lamour G., A. Eftekhari-Bafrooei, E. Borguet, S. Souès, and A. Hamraoui. Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. BIOMATERIALS. 2010; 31:3762–71. doi.org/10.1016/j.biomaterials.2010.01.099
On developing technical and software tools:
– Lamour G., JB. Kirkegaard, HB. Li, TPJ. Knowles, and J. Gsponer. Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. SOURCE CODE BIOL MED. 2014; 9:16.1–16.6. doi.org/10.1186/1751-0473-9-16
Publications (full list):
2025
[29] Allard A., Liboz M., Crépin R., Labdi S., Maciejak O., Malo M., Campillo C., and G. Lamour. CellMAP: an open-source software tool to batch-process cell topography and stiffness maps collected with an atomic force microscope. BMC BIOINFORMATICS. (just accepted, Jan 21 2025)
2024
[28] Lamour G., M. Malo, R. Crépin, J. Pelta, S. Labdi, and C. Campillo. Dynamically mapping the topography and stiffness of the leading edge of migrating cells using AFM in Fast-QI mode. ACS BIOMATER. SCI. ENG. 2024; 10:1364–78. doi.org/10.1021/acsbiomaterials.3c01254
[27] Herardot E., M. Liboz, G. Lamour, M. Malo, A. Plancheron, W. Habeler, C. Geiger, E. Frank, C. Campillo, C. Monville, and K. Ben M’Barek. Biomechanical characterization of retinal pigment epitheliums derived from hPSCs using atomic force microscopy. STEM CELL REV. 2024; 20;1340–52; doi.org/10.1007/s12015-024-10717-3
2023
[26] Seffouh I., M. Bilong, C. Przybylski, N. El Omrani, S. Poyer, G Lamour, M-J Clément, F. Gonnet, RR. Vivès, R. Daniel. Structure and functional impact of glycosaminoglycan modification of HSulf-2 endosulfatase revealed by atomic force microscopy and mass spectrometry. SCI. REP. 2023; 13:22263; doi.org/10.1038/s41598-023-49147-5
[25] Liboz M., A. Allard, M. Malo, G. Lamour, G. Letort, B. Thiébot, S. Labdi, J. Pelta, and C. Campillo. Using adhesive micropatterns and AFM to assess cancer cell morphology and mechanics. ACS APPL. MATER. INTERFACES. 2023; 15:43403–13; doi.org/10.1021/acsami.3c07785
2021
[24] Cho Y., T. Christoff-Tempesta, D-Y. Kim, G. Lamour, and J. Ortony. Domain-selective thermal decomposition within supramolecular nanoribbons. NAT COMMUN; 2021; 12:7340; doi.org/10.1038/s41467-021-27536-6
[23] Kim D-Y., T. Christoff-Tempesta, G. Lamour, X. Zuo, KH. Ryu, J. Ortony. Morphological
transitions of a photoswitchable aramid amphiphile nanostructure. NANO LETTERS; doi.org/10.1021/acs.nanolett.0c05048
[22] Christoff-Tempesta T., Y. Cho, DY. Kim, M. Geri, G. Lamour, AJ. Lew, X. Zuo, WR. Lindemann, JH. Ortony. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. NAT NANOTECHNOL 2021; doi.org/10.1038/s41565-020-00840-w
2020
[21] Lamour G., A. Allard, J. Pelta, S. Labdi, M. Lenz, and C. Campillo. Mapping and Modeling the Nanomechanics of Bare and Protein-Coated Lipid Nanotubes. PHYS REV X. 2020; 10:011031-1–17. doi.org/10.1103/PhysRevX.10.011031
2019
[20] Nassar R., E. Wong, J. Gsponer, and G. Lamour. Inverse correlation between amyloid stiffness and size. J AM CHEM SOC. 2019; 141:58–61. doi.org/10.1021/jacs.8b10142
2018
[19] Nassar R., E. Wong, JM. Bui, CK. Yip, HB. Li, J. Gsponer, and G. Lamour. Mechanical anisotropy in GNNQQNY amyloid crystals. J PHYS CHEM LETT. 2018; 9: 4901–09. doi.org/10.1021/acs.jpclett.8b02027
[18] Silverman J., E. Gibbs, X. Peng, K. Martens, C. Balducci, J. Wang, M. Yousefi, C.M. Cowan, G. Lamour, et al. A Rational Structured Epitope Defines a Distinct Subclass of Toxic Amyloid-beta Oligomers. ACS CHEM NEUROSCI. 2018; 9:1591–1606. doi.org/10.1021/acschemneuro.7b00469
2017
[17] Lamour G., R. Nassar, PHW. Chan, G. Bozkurt, J. Li, JM. Bui, C. Yip, T. Mayor, HB. Li, H. Wu, and J. Gsponer. Mapping the broad structural and mechanical properties of amyloid fibrils. BIOPHYS J. 2017; 112:584–594. doi.org/10.1016/j.bpj.2016.12.036
2016
[16] J. Feng, G. Lamour, R. Xue, MN. Mirvakliki, SG. Hatzikiriakos, J. Xu, HB. Li, S. Wang, X. Lu. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. INT J FOOD MICROBIOL. 2016; 238:172–182. doi.org/10.1016/j.ijfoodmicro.2016.09.008
2015
[15] Panwar P., G. Lamour, NCW. Mackenzie, H. Yang, F. Ko, HB. Li, D. Brömme. Changes in structural-mechanical properties and degradability of collagen during ageing-associated modifications. J BIOL CHEM. 2015; 290:23291–306. doi.org/10.1074/jbc.M115.644310
[14] Lamour G., S. Souès, A. Hamraoui. Substrate-induced PC12 cell differentiation without filopodial, lamellipodial activity or NGF stimulation. MACROMOL BIOSCI. 2015; 15:364–371. doi.org/10.1002/mabi.201400323
2014
[13] Lamour G., JB. Kirkegaard, HB. Li, TPJ. Knowles, and J. Gsponer. Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. SOURCE CODE BIOL MED. 2014; 9:16.1–16.6. doi.org/10.1186/1751-0473-9-16
[12] Kovacic S., L. Samii, G. Lamour, HB. Li, H. Linke, EHC. Bromley, DN. Woolfson, PMG. Curmi, and NR. Forde. Construction and characterization of kilobasepair densely labeled peptide-DNA. BIOMACROMOLECULES. 2014; 15:4065–4072. doi.org/10.1021/bm501109p
[11] He C., G. Lamour, A. Xiao, J. Gsponer and HB Li. Mechanically Tightening a Protein Slipknot into a Trefoil Knot. J AM CHEM SOC. 2014; 136:11946–11955. doi.org/10.1021/ja503997h
[10] Lamour G., C. Yip, HB. Li, and J. Gsponer. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young’s moduli. ACS NANO. 2014; 8:3851–3861. doi.org/10.1021/nn5007013
2013
[9] Ostapchenko VG., FH. Beraldo, AH. Mohammad, YF. Xie, P. Hirata, AC. Magalhaes, G. Lamour, et al. The prion protein ligand, stress-inducible phosphoprotein I (STI1), regulates amyloid-; oligomer toxicity. J. NEUROSCI. 2013; 33:16552–16564. doi.org/10.1523/JNEUROSCI.3214-13.2013
[8] Cumberworth A. , G. Lamour, M. Babu, and J. Gsponer. Promiscuity as a functional trait: Intrinsically disordered regions as central players of interactomes. BIOCHEM J. 2013; 454:361–369. doi.org/10.1042/BJ20130545
[7] Panwar P., X. Du, V. Sharma, G. Lamour, M. Castro, HB. Li, and D. Brömme. Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J BIOL CHEM. 2013; 288:5940–5960. doi.org/10.1074/jbc.M112.419689
2012
[6] Li YD., G. Lamour, J. Gsponer, P. Zheng and HB. Li. The molecular mechanism underlying mechanical anisotropy of the protein GB1. BIOPHYS J. 2012; 103:2361–2368. doi.org/10.1016/j.bpj.2012.10.035
2011
[5] Lamour G., S. Souès, and A. Hamraoui. Interplay between long- and short-range interactions drives neuritogenesis on stiff surfaces. J BIOMED MAT RES A. 2011; 99A: 598–606. doi.org/10.1002/jbm.a.33213
[4] Khorvash M., G. Lamour, and J. Gsponer. Long-time scale fluctuation s of human prion protein determined by restrained MD simulations. BIOCHEMISTRY. 2011; 50: 10191–94. doi.org/10.1021/bi2012756
2010
[3] Lamour G., A. Eftekhari-Bafrooei, E. Borguet, S. Souès, and A. Hamraoui. Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. BIOMATERIALS. 2010; 31:3762–3771. doi.org/10.1016/j.biomaterials.2010.01.099
[2] Lamour G., A. Hamraoui, A. Buvailo, Y. Xing, S. Keuleyan, V. Prakash, A. Eftekhari-Bafrooei, and E. Borguet. Contact angle measurements using a simplified experimental set-up. J CHEM EDUC. 2010; 87:1403–1407. doi.org/10.1021/ed100468u
2009
[1] Lamour G., N. Journiac, S. Souès, S. Bonneau, P. Nassoy, and A. Hamraoui. Influence of surface energy distribution on neuritogenesis. COLLOIDS SURF B. 2009; 72:208–218. doi.org/10.1016/j.colsurfb.2009.04.006
Mentoring activities
- Habilité à diriger des recherches (HDR, 2024)
- Coadvised 10+ Ph.D. and M. Sc. students over the last 10 years.
Tutorial Lecturer ("chargé de TD")
- 2020: Tutorial Lectures/Workshop on Atomic Force Microscopy to Masters' students
- 2016: Physics classes at the University of Evry (96 h; 3 × 40 students; 1st year undergraduates)
- 2007: Physics classes at the Faculty of Medicine, University of Paris Descartes (66 h; 2 × 40 students; 1st year undergraduates-"PCEM = première année du cycle d'études médicales")
guillaume.lamour [at] univ-evry.fr
lamour99 [at] hotmail.com
Homepages